Student Projects in Automated Reasoning about Programs

Contact: Laura Kovács


The logically deep parts of the code are characterized by loops or recursions. For these parts, formal program verification is an appropriate tool. One of its biggest challenges is the automated discovery of auxiliary program assertions, leading to the discovery of safety and liveness properties of programs.

The increasing power of automated theorem proving and computer algebra have opened new perspectives for computer aided program verification, in particular for the automatic generation of invariant assertions and ranking functions in order to reason about loops and recursion. Especially promising breakthroughs are the assertion generation techniques by first-order theorem proving, satisfiability modulo theory (SMT) reasoning, and symbolic computation. These techniques can efficiently be used in conjunction with model checking, interpolation, static analysis, abstract interpretation, symbolic execution, or game-theoretic investigations.

We offer student projects (semester, master, PhD) dealing with the design of efficient methods for automated reasoning and generation of program assertions.

Project topics include, but are not limited to:

Improvements and extensions on the existing algorithms for software verification are highly welcomed.

If you are interested in either of the topic above and/or have related topics of interest, please contact us!
Contact: Laura Kovács.